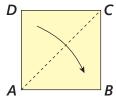
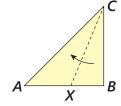

3 points problems

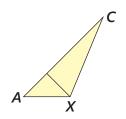
01. The leaflet shown includes transparent windows, allowing what is below to be clearly seen when the flaps are folded over.

When both flaps are folded over, what is the sum of the numbers that can be seen through the windows?

- **(A)** 7
- **(B)** 9
- **(C)** 12
- **(D)** 14
- **(E)** 15
- 02. The base of a triangle increases by 50% and its height decreases by one-third. What is the ratio of the area of the new triangle to that of the original triangle?
 - **(A)** 2:1
- **(B)** 1:1
- **(C)** 1:2
- **(D)** 1:3
- **(E)** 1:4
- 03. In which of the following hexagons is exactly one-third of the area black and exactly half of the area white?






- **04.** Given that x > 5, which is the smallest of the following numbers?
- (B) $\frac{5}{x+1}$ (C) $\frac{5}{x-1}$ (D) $\frac{x}{5}$
- **05.** A recipe requires 1 cup of rice and 1.5 cups of water. Rouven wants to use 1.5 cups of rice. How many cups of water does he need to maintain the proportions of the recipe?
 - **(A)** 1
- **(B)** 1.25
- **(C)** 1.75
- **(D)** 2.25
- **(E)** 2.5
- **06.** Lisa has four wooden digits. She can use them to form the number 2025. How many different numbers greater than 2025 can she form with these digits in the grid?

- **(A)** 3
- **(B)** 6
- **(C)** 8
- **(D)** 9
- **(E)** 11
- **07.** Alex folds the square *ABCD* in half along the diagonal *AC* to make a triangle. Then he folds the paper again so that the edge BC of this triangle lies on top of the long edge of this triangle, making the smaller triangle AXC, as shown.

What is the size of angle $A\hat{X}C$?

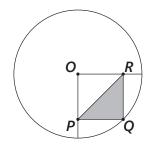
- **(A)** 108°
- **(B)** 112.5°
- **(C)** 120°

1

- **(D)** 145°
- **(E)** 157.5°

- **08.** The 4-digit number shown is missing its last two digits. The number is divisible by 8 and 9. What is the product of these two missing digits?
- 8 0 ?

- **(A)** 6
- **(B)** 16
- **(C)** 20
- **(D)** 24
- **(E)** 48
- 09. Luka has some dogs, some rabbits and some cats. Eight of his pets are not dogs. Five of his pets are not rabbits. Seven of his pets are not cats.


How many pets does Luka have?

- **(A)** 10
- **(B)** 11
- **(C)** 15
- **(D)** 16
- **(E)** 20
- **10.** A circle with center **O** and radius 10 cm is given. A square **OPQR** is drawn inside the circle, where Q is a point on the circle.

What is the area of the shaded triangle PQR?

- **(A)** 12.5 cm²
- **(C)** 50 cm²
- **(E)** 100 cm²

- **(B)** 25 cm²
- **(D)** 75 cm²

4 points problems


11. An athlete has a collection of two gold and five silver medals. They are numbered from 1 to 7, in some order. The picture shows six black and white photos of the medals, each photo containing three medals. It is known that in each photo, exactly one of the medals is gold.

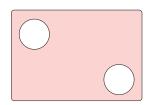
(2)(3)(4) (6)(7)

What is the sum of the numbers on the two gold medals?

- **(A)** 7
- **(B)** 8
- **(C)** 9
- **(D)** 10
- **(E)** 11

12. Anna looks at a photo on her smartphone. The format is 16:9 and fills the whole display. When she turns the smartphone, the picture gets smaller to fit the screen while maintaining its original proportions, as shown.

What fraction of the display area is taken up by the smaller picture?


- (A) $\frac{3}{4}$ (B) $\frac{9}{16}$ (C) $\frac{27}{64}$ (D) $\frac{32}{81}$
- 13. Kate and Tom are celebrating their birthday today. Tom notices that $\frac{1}{19}$ of Kate's age is equal to $\frac{1}{17}$ of his age. The sum of their ages is greater than 40 and less than 100.

How old is Kate?

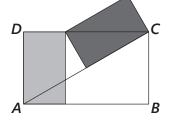
- **(B)** 34

- **(C)** 38
- **(D)** 57
- **(E)** 76

14. Paul shoots a total of 27 times at two targets. He hits 50% of the shots he aims at the top left target and 80% of the shots he aims at the bottom right target. He misses a total of 9 shots.

How many times did he aim for and hit the top left target?

- **(A)** 4
- **(B)** 5
- **(C)** 6
- **(D)** 7
- **(E)** 8
- 15. Sara has a bag of 18 balls, numbered from 1 to 18. What is the smallest number of balls Sara should remove in order to guarantee that she has removed at least three balls with prime numbers on them?
 - **(A)** 11
- **(B)** 12
- **(C)** 13
- **(D)** 14
- **(E)** 15
- 16. A group of kangaroos celebrated their birthdays together. They were all different ages and younger than 20, and the product of their ages was 2025. How many kangaroos could there be at most in this group?
 - **(A)** 2
- **(B)** 3
- **(C)** 4
- **(D)** 5
- **(E)** 6
- 17. The integer N is the largest six-digit integer with the product of all its digits equal to 180. What is the sum of the digits of N?
 - **(A)** 21
- **(B)** 22
- **(C)** 23
- **(D)** 24
- **(E)** 25
- **18.** The two shaded rectangles are congruent. Both shaded rectangles have area 4. What is the area of the large rectangle ABCD?



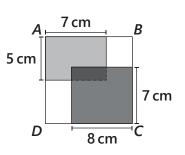
(D) 12

(B) 8√3

(E) $4\sqrt{3}$

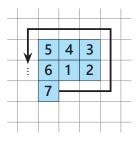
(C) 8

- 19. The product of three prime numbers is 11 times their sum. What is the largest possible value that their sum can take?
 - **(A)** 14
- **(B)** 17
- **(C)** 21
- **(D)** 25
- **(E)** 26
- 20. Five bricks are placed on the ground, as shown. Peter can only remove a brick if there are no bricks on top of it. He selects one of the available bricks at random and removes it, until all the bricks are removed.



What is the probability that the brick numbered 4 is the third brick to be removed?

- (A) $\frac{1}{3}$
- (C) $\frac{1}{5}$ (D) $\frac{1}{6}$


5 points problems

21. The square *ABCD* contains two rectangles. One is light grey, and the other is dark grey, with dimensions as shown in the diagram (not to scale). The area of the overlapping part of the two rectangles is 18 cm^2 .

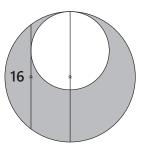
What is the perimeter of ABCD?

- (A) 28 cm
- **(B)** 34 cm
- **(C)** 36 cm
- **(D)** 38 cm
- (E) 40 cm
- 22. Daniel numbers certain squares on a sheet of grid paper. Each square has a side-length of 0.5 cm. He starts with one square and then numbers the squares 2, 3, 4, 5, ... in a counter-clockwise direction, as shown. He stops when he has numbered 2025 squares, and looks at the shape made up of all the numbered squares.

What is the perimeter of this shape?

- (A) 25 cm
- **(B)** 45 cm
- **(C)** 80 cm
- **(D)** 90 cm
- (E) 180 cm
- 23. ABCDEF is a six-digit integer made up of the digits 1, 2, 3, 4, 5, and 6, with no repeated digits. Its first two digits AB is multiple of 2, its first three digits ABC is multiple of 3, its first four digits ABCD is multiple of 4, its first five digits ABCDE is multiple of 5, and the full integer ABCDEF is a multiple of 6.

What is the sixth digit, F?


(A) 2

(D) Both 2 and 4 are possible.

(B) 4

(E) Both 4 and 6 are possible.

- **(C)** 6
- 24. In the diagram, the diameter of the inner circle forms part of the diameter of the outer circle. The outer circle has a chord of length 16 that is parallel to its diameter and is also a tangent to the inner circle.

What is the area of the shaded region?

(A) 36π

(D) 81π

(B) 49π

(C) 64π

(E) The information provided is not sufficient.

25. A sequence of numbers $(a_1, a_2, a_3, a_4, ..., a_{10})$ is such that from the third term onwards, each term is equal to the mean of all the previous terms. That is, a_3 is the mean of a_1 and a_2 ; a_4 is the mean of a_{1} , a_{2} and a_{3} ; and so on. In this sequence $a_{1}=8$ and $a_{10}=26$. What is the value of a_3 ? **(A)** 28 **(C)** 38 **(D)** 44 **(E)** 50 **(B)** 32 **26.** Six circles are arranged in the shape of a triangle, as shown. John writes the digits from 1 to 6 inside the circles so that the sums of the numbers in the circles on all three sides of this triangle are the same. He then calculates the sum of the numbers in the three circles at the vertices of the triangle. How many possible values could he obtain for this sum? **(A)** 1 **(B)** 2 **(C)** 3 **(D)** 4 **(E)** 5 27. A four-digit integer ABCD is multiplied by its units digit D. The result is a different four-digit integer **DXYA**, that has the units and thousands digits of the original integer interchanged. How many four-digit integers **ABCD** have this property? **(A)** 1 **(B)** 2 **(C)** 9 **(D)** 10 **(E)** 11 28. At a party, there are twelve children, including three pairs of twins. How many ways are there to distribute six blue hats and six red hats to the children, so that in each pair of twins, both children are wearing hats of the same colour? **(A)** 72 **(B)** 86 **(C)** 92 **(D)** 102 **(E)** 132 **29.** Triangle *ABC* has an area of 60. Point *I* is the midpoint of side *BC*, and the points J and K divide side AC into three equal segments. Point L is the intersection of AI and BJ. What is the area of triangle ALJ? **(A)** 4 **(D)** 7 М **(B)** 5 **(E)** 8 **(C)** 6 **30.** Anastasia wants to write the integer numbers from 1 to 8 into the cells of a 2 imes 4 grid. The number in each cell must be smaller than the number in the cell to its right and smaller than the number in the cell below it. In how many different ways can Anastasia fill the grid? **(A)** 6 **(B)** 8 **(C)** 10 **(D)** 12 **(E)** 14